PRODUCT TECHNICAL DATA SHEETS

FLOWSHEET

ULTRAPMGTM

PURIFICATION PURIFIED FLAKE GRAPHITE ≥ 99.95 WT% C

> MICRONIZATION MILLING

PMG

Made-in-USA Battery-Ready Natural Purified Micronized Graphite (PMG) for Lithium-ion, Lithium Primary, Lead-Acid & Alkaline Batteries

TECHNICAL DATA SHEET

General Characteristics	
Product Name	ULTRA-PMG [™]
Туре	Natural Flake Purified Micronized Graphite
Chemical Name	Graphite
Chemical Element	С
Appearance	Fine dark gray powder
True Density	2.23 g/cm ³
County of Origin	USA
Country of Manufacture	USA
Melting Point	3,750 °C (sublimes)
Molecular Weight	12.01 g/mol
CAS Number	7782-42-5
EC Number (EINECS)	231-955-3
Harmonized Tariff Schedule (HTS US)	2504.10.10.00

Particle Size Distribution

3.9 µm

Quality Assurance	(QA) t	est results	confirmed	as of a	August 3	, 2017

Mean Value

Physical Characteristics			
Purity (LOI ₉₅₀)	99.95 to 99.99993 wt% C		
Ash, wt%	0.05 to 0.00007%		
Moisture	<0.1wt%		
BET Surface Area	11.2 m ² /g		
Tap Density	0.26 g/cm ³		

ULTRAPMG

Standard Grades	
ULTRA-PMG−25 [™] Graphite	D ₅₀ = 25 μm
ULTRA-PMG−12 [™] Graphite	D ₅₀ = 12 μm
ULTRA-PMG−035 [™] Graphite	D ₅₀ = 3.5 µm

 Westwater Resources is capable of producing natural ULTRA-PMG[™] graphite with D₅₀ ranging from 3 µm to 45 µm (all data presented is based on a D₅₀ particle size of 3.5 µm)

Westwater Resources' natural ULTRA-PMG[™] processed natural graphite for conductivity-enhancement applications

FOUR-TERMINAL-SENSING RESISTIVITY TEST RESULTS (4T SENSING)

ULTRA-PMG[™] Graphite Conductivity-Enhancement Diluent in MnO₂ (wt% diluent)

Note: Westwater Resources was able to achieve two sub-10-micron (μ m) size PMG (D_{50} = 3 μ m and D_{50} = 7 μ m) ULTRA-PMGTM conductivity-enhancement materials for its preliminary 4T-sensing resistivity testing.

In the graph above, the horizontal line (or the 'X' axis) represents the weight percent (wt%) addition of conductivity-enhancement graphite in manganese dioxide (MnO_2) matrix as a function of EMD electrode resistivity of the additive. The vertical line (or the 'Y' axis) represents the electrical resistivity measured in SI units of ohm-meters (Ω ·m). The ideal is to obtain the lowest resistivity with the least amount of conductivity-enhancement graphite.

Westwater Resources' ULTRA-PMG^m consistently features low resistivity (meaning, higher conductivity) in MnO₂ electrolytic manganese dioxide (EMD) electrode matrices across all practical percentage point additions.

ULTRA-PMG[™] GRAPHITE RESISTIVITY DATA

	Resistivity Measurement (Ω·m)	Graphite Conductivity-Enhancement Diluent in MnO ₂ (wt% diluent)
	0.016	4
ULTRA-PMG−035 [™]	0.025	3
Graphite	0.013	2
	0.137	1
	0.730	0.5
	0.015	4
ULTRA-PMG−075 [™]	0.037	3
Graphite	0.109	2
-	0.250	1
	0.422	0.5

TRACE MINERAL IMPURITIES **Key elements**

Element	Concentration (ppm)	
Ag (Silver)	< 0.05	
AI (Aluminum)	1	
As (Arsenic)	< 0.05	
B (Boron)	4.4	
Ba (Barium)	< 0.05	
Be (Beryllium)	< 0.01	
Bi (Bismuth)	< 0.05	
Ca (Calcium)	< 0.5	
Cd (Cadmium)	< 0.5	
Co (Cobalt)	< 0.05	
Cr (Chromium)	< 0.5	
Cu (Copper)	< 0.05	
Fe (Iron)	8.4	
Ga (Gallium)	< 0.05	
Ge (Germanium)	< 0.1	
Hf (Hafnium)	< 0.05	
K (Potassium)	< 0.5	
Li (Lithium)	< 0.01	
Mg (Magnesium)	< 0.1	
Mn (Manganese)	0.14	
Mo (Molybdenum)	< 0.05	
Na (Sodium)	< 0.05	
Ni (Nickel)	< 0.05	
P (Phosphorus)	0.3	
Pb (Lead)	< 0.1	
S (Sulfur)	6	
Se (Selenium)	< 0.5	
Si (Silicon)	37	
Sn (Tin)	< 0.1	
Te (Tellurium)	< 0.05	
Ti (Titanium)	< 0.05	
V (Vanadium)	< 0.05	
W (Tungsten)	< 0.05	
Zn (Zinc)	< 0.1	

Data by GDMS

DISCLAIMER

FOR REFERENCE ONLY. The information contained within this product information bulletin is not a product specification. Information provided in this document is supplied to indicate the approximate physical and chemical properties of the material. Customers are strongly urged to test the material independently prior to application/purchase.

Westwater Resources, Inc. Technical Advisor, Gareth P. Hatch, PhD, CEng, FIMMM, FIET, has reviewed and approved the scientific and technical disclosure in this technical data sheet.

CONTACT

Westwater Resources 6950 South Potomac Street Suite 300 Centennial, CO. 80112 USA

t. +1 303 531 0472 tdinwoodie@westwaterresources.net

ULTRADEXDG

PURIFICATION PURIFIED FLAKE GRAPHITE ≥ 99.95 WT% C

> HNO₃ + H₂SO₄ ACID INTERCALATION

EXPANSION REACTOR (THERMAL EXFOLIATION)

DELAMINATION MILLING

DEXDG

Made-in-USA Battery-Ready Natural Delaminated Expanded Graphite (DEXDG) for Lithium-ion, Lithium Primary, Lead-Acid & Alkaline Batteries

TECHNICAL DATA SHEET

General Characteristics	
Product Name	ULTRA-DEXDG™
Туре	Natural Flake Delaminated Expanded Graphite
Chemical Name	Graphite
Chemical Element	С
Appearance	Fine dark gray powder
True Density	2.1 to 2.23 g/cm ³
County of Origin	USA
Country of Manufacture	USA
Melting Point	3,750 °C (sublimes)
Molecular Weight	12.01 g/mol
CAS Number	7782-42-5
EC Number (EINECS)	231-955-3
Harmonized Tariff Schedule (HTS US)	2504.10.10.00

Particle Size Distribution

Quality Assurance (QA) test results confirmed as of August 17, 2017

Physical Characteristics			
Purity (LOI950)	> 99.95 wt% C		
Ash, wt%	0.05%		
Moisture	< 0.1 wt%		
BET Surface Area	18 m²/g		
Tap Density	0.12 g/cm ³		
Scott Volume	0.07 g/cm ³		

ULTRADEXDG

Standard Grades	
ULTRA-DEXDG-25 [™] Graphite	D ₅₀ = 25 μm
ULTRA-DEXDG−15 [™] Graphite	D ₅₀ = 10 μm
ULTRA-DEXDG-07 [™] Graphite	D ₅₀ = 7 μm

 Westwater Resources is capable of producing natural ULTRA-DEXDG[™] graphite with D₅₀ ranging from 3 µm to 45 µm (all data presented is based on a D₅₀ particle size of 6.7 µm)

SEM of Westwater Resources' natural ULTRA-DEXDG[™] processed natural graphite for conductivity-enhancement applications

ULTRADEXDG[™]

4T-SENSING RESISTIVITY TEST RESULTS OF WESTWATER'S DEXDG VS. COMPETITIVE PRODUCTS

TRACE MINERAL IMPURITIES **Key elements**

In Figure 1, the horizontal line (or the 'X' axis) represents the addition of conductivity-enhancement graphite in manganese dioxide (MnO₂) matrix as a function of total weight percentage (wt%) of the additive. The vertical line (or the 'Y' axis) represents the electrical resistivity measured in SI units of ohm-meters (Ω •m). The ideal is to obtain the lowest amount of resistivity with the least amount of conductivity-enhancement graphite.

Element	Concentration (ppm	
AI	2.67	
As	1.36	
Са	1.29	
Со	<0.1	
Cr	0.075	
Cu	0.09	
Fe	6.373	
Мо	0.849	
Ni	0.392	
Pb	0.02	
Sb	0.124	
Si	0.15	
Sn	0.08	
V	0.119	

Data by Solid ICP

4T-SENSING RESISTIVITY TEST RESULTS OF ULTRA-DEXDG™ VS. COMPETITIVE PRODUCTS

Conductivity-Enhancement Material	Graphite Conductivity-Enhancement Diluent in MnO_2 (wt% diluent)	Resistivity Measurement (Ω·m)
Westwater Resources' ULTRA-DEXDG−07™ natural Delaminated Expanded Graphite	4.25	.0533 Ω·m
Imerys Graphite & Carbon's TIMREX® KS4 primary synthetic graphite	4.25	.0991 Ω·m
Superior Graphite's FormulaBT® 2939APH premium-quality natural flake graphite	4.25	.1524 Ω·m

As indicated in Figure 1 and Table 1 above, Westwater Resources' ULTRA-DEXDG -07^{TM} features lower resistivity in MnO₂ electrolytic manganese dioxide (EMD) electrode matrices across all practical percentage point additions, compared to commercially available grades of both natural and synthetic graphite products, produced by Superior Graphite and Imerys Graphite & Carbon respectively.

DISCLAIMER

FOR REFERENCE ONLY. The information contained within this product information bulletin is not a product specification. Information provided in this document is supplied to indicate the approximate physical and chemical properties of the material. Customers are strongly urged to test the material independently prior to application/purchase.

Westwater Resources, Inc. Technical Advisor, Gareth P. Hatch, PhD, CEng, FIMMM, FIET, has reviewed and approved the scientific and technical disclosure in this technical data sheet.

CONTACT

Westwater Resources 6950 South Potomac Street Suite 300 Centennial, CO. 80112 USA

t. +1 303 531 0472 tdinwoodie@westwaterresources.net

FLOWSHEET

PURIFICATION PURIFIED FLAKE GRAPHITE ≥ 99.95 WT% C

> MICRONIZATION MILLING

SPHERONIZATION

SURFACE TREATMENT (CARBON COATING)

CSPG

Made-in-USA Battery-Ready Natural Coated Spherical Purified Graphite (CSPG) for Lithium-ion Battery Anodes

TECHNICAL DATA SHEET

General Characteristics	
Product Name	ULTRA-CSPG™
Туре	Natural Flake Coated Spherical Purified Graphite
Chemical Name	Graphite
Chemical Element	С
Appearance	Fine dark gray powder
True Density	2.23 g/cm ³
County of Origin	USA
Country of Manufacture	USA
Melting Point	3,750 °C (sublimes)
Molecular Weight	12.01 g/mol
CAS Number	7782-42-5
EC Number (EINECS)	231-955-3
Harmonized Tariff Schedule (HTS US)	2504.10.10.00

Particle Size Distribution Laser diffraction particle size analysis by Microtrac S3500 100 20 90 80 %Channel **Passing** 70 60 50 10 40 30 20 10 0. 0 0.1 10 100 1,000 Microns (µm) D₁₀ 10.7 µm D₅₀ 14.5 µm D₉₀ 29.6 µm Mean Value 19.6 µm

Quality Assurance (QA) test results confirmed as of June 11, 2016

Physical Characteristics			
Purity (LOI950)	99.95 to ≤99.99993 wt% C		
Ash, wt%	0.05 to ≤0.000071%		
Moisture	<0.1 wt%		
BET Surface Area	0.62 m ² /g		
Tap Density	0.985 g/cm ³		

 Westwater Resources is capable of producing natural ULTRA-CSPG[™] graphite with D₅₀ ranging from 10 μm to 35 μm

SEM of Westwater Resources' natural ULTRA-CSPG™ anode graphite for Li-ion batteries

INITIAL GALVANOSTATIC CYCLING OF ULTRA-CSPG™ IN CR2016 CELLS VS. Li/Li⁺ COUNTER ELECTRODE

TRACE MINERAL IMPURITIES **KEY ELEMENTS**

Element	Concentration (ppm)		
Al	2.67		
As	1.36		
Ca	1.29		
Со	<0.1		
Cr	0.075		
Cu	0.09		
Fe	6.373		
Мо	0.849		
Ni	0.392		
Pb	0.02		
Sb	0.124		
Si	0.15		
Sn	0.08		
V	0.119		

Data by Solid ICP

Note: the C-rate of C/20 means that the necessary current is applied or drained from the battery to completely charge or discharge it in 20 hours, which is a low discharge rate.

ULTRA-CSPG™ VS. COMMERCIAL SYNTHETIC GRAPHITE

CR2016 Li-ion Battery Anode	Reversible Capacity	Irreversible Capacity Loss	BET Surface Area
ULTRA-CSPG [™] Natural Graphite D₅₀ = 18.3 μm	367.21 mAh/g	5.09% (94.91% efficient)	0.62 m²/g
Commercial Lithium-ion Synthetic D_{50} = 15.8 µm	347.2 mAh/g	6.06% (93.94% efficient)	1.15 m²/g

m²/g = square meter per gram

DISCLAIMER

FOR REFERENCE ONLY. The information contained within this product information bulletin is not a product specification. Information provided in this document is supplied to indicate the approximate physical and chemical properties of the material. Customers are strongly urged to test the material independently prior to application/purchase.

Westwater Resources, Inc. Technical Advisor, Gareth P. Hatch, PhD, CEng, FIMMM, FIET, has reviewed and approved the scientific and technical disclosure in this technical data sheet.

CONTACT

Westwater Resources 6950 South Potomac Street Suite 300 Centennial, CO. 80112 USA

t. +1 303 531 0472 tdinwoodie@westwaterresources.net

www.westwaterresources.net

